If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=112+96(t)-16(t)^2
We move all terms to the left:
200-(112+96(t)-16(t)^2)=0
We get rid of parentheses
16t^2-96t-112+200=0
We add all the numbers together, and all the variables
16t^2-96t+88=0
a = 16; b = -96; c = +88;
Δ = b2-4ac
Δ = -962-4·16·88
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{14}}{2*16}=\frac{96-16\sqrt{14}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{14}}{2*16}=\frac{96+16\sqrt{14}}{32} $
| 171/6x=10 | | 9x+26x-5=7(5x+9) | | -3x-230=92+11x | | 75+5x=25+0x | | 3x+18(x1)=60 | | 13÷x=13 | | 40=4/5(m+7) | | 12x^2-104x+165=0 | | -3x-2/0=92+11x | | (8-5i)^2+(8-5i)^2=0 | | 4.2+10m=7.38 | | 52-9x=-124 | | 7q=8q+10 | | 3(x+)-4=3(x-5) | | (2x-3)+(x)+(5x+7)=180 | | 24x85=0 | | 2(17x-28)=6x+21 | | -24-11=-6(4x+1) | | 33x+98=33x+9 | | -3=b+9 | | 2×17x-28=6x+21 | | y=11.4+0.5+9.9+0.6 | | 6f+10=8f-10+8f | | 10+2y=31 | | 18x-18=16x | | 9.12=2.4y | | 2x-5(x-5)=-4+2x+14 | | 1/2(6x+5)=x | | s(1)=112+96(1)-16(1)^2 | | 8p-10=62 | | 7x+25=-65 | | 1x+10=1x+20 |